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Abstract We analyze a bioeconomic model of a multiple-host disease problem involving
wildlife and livestock. The social planner’s choices include targeted (i.e., infectious versus
healthy) livestock harvests, non-targeted wildlife harvests, environmental habitat variables,
and on-farm biosecurity to prevent cross-species contacts. The model is applied to bovine
tuberculosis among Michigan white-tailed deer and cattle. We find optimal controls may
target the livestock sector more stringently when the livestock sector exhibits low value
relative to the wildlife sector. This is in contrast with the conventional wisdom on the issue
that controls should primarily target wildlife species that serve as disease reservoirs.

Keywords Bioeconomics · Infectious disease · Ecosystem management · White-tailed
deer · Optimal control

1 Introduction

Livestock epizootics (the sudden spread of a disease in a non-human population) may threaten
the economic well-being of farmers and ranchers, the food production system, valuable
wildlife resources including game and endangered species, and human health (Cleaveland
et al. 2001; Daszak et al. 2000). Epizootics in wildlife may pose similar threats (USDA-NASS
2002; TRS 2002). Indeed, the spread of infectious diseases among and between wild and
domestic animals is a major global problem (Daszak et al. 2000; The Economist 2005). In
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this paper, we examine the management of a pathogen that infects both wild and domestic
animals.

Solutions to disease problems might be straightforward if vaccinations were viable
options or if the health status of individual animals was easily observable, enabling a cull
of infected animals (albeit at a cost). But vaccination is not a practical option for many
diseases, such as bovine tuberculosis (bTB) (Mycobaterium bovis) in cattle or deer, the focus
of this paper (MDA 2002).1 Moreover, health status is often unobservable prior to diagnos-
tic testing (Lanfranchi et al. 2003), which is also the case for bTB. Livestock can often be
tested for disease status to facilitate disease management, but postmortem testing is often the
only practical option to identify wildlife health status (Lanfranchi et al. 2003). The result is
that wildlife harvests are non-selective with respect to disease status, complicating wildlife
disease control. This could have implications for managing disease among livestock popu-
lations. An inability to adequately control the disease in wildlife could result in the wildlife
population exerting a continual force of infection on livestock, undermining livestock dis-
ease control efforts. This is particularly true for wildlife populations considered to be disease
reservoirs for livestock—that is, when the wildlife population exerts the greatest influence
on new infections in livestock.

Two approaches to wildlife disease control have been advocated when wildlife harvests
are non-selective with respect to disease status. The first approach, which is only applicable
when disease transmission is density-dependent, requires harvesting the aggregate population
below an exogenous host-density threshold (Barlow 1991; McCallum et al. 2001). This is the
population density level at which infectious contacts are sufficiently reduced that the disease
begins to dissipate. Prolonged disease control can be costly when non-selective harvesting
is the only management option or the host-density threshold occurs at a low-density.

The second approach is to manipulate environmental or habitat conditions to affect disease
dynamics. Horan and Wolf (2005) analyzed a model of bTB in Michigan white-tailed deer
(Odocoileus virginianus), where one type of habitat control, supplemental feeding of deer,
artificially increased infectious contacts. As with harvests, supplemental feeding in their
model is non-selective with respect to health status—healthy and sick deer have equal access
to the feed. While there is no host-density threshold in their model (as they model density-
independent or frequency-dependent disease transmission), there is a feeding threshold such
that disease prevalence diminishes if feeding is kept below this value.2 However, they found
the maintaining feeding below this threshold so as to eradicate the disease might not be
optimal: the benefits of maintaining sufficiently small feeding levels, in terms of reduced
infectious contacts, may not outweigh the costs associated with reducing in situ reproduction
of healthy deer.

A combination of harvests and habitat manipulation can be used to improve disease
management when disease transmission is density-dependent. Fenichel and Horan (2007)
develop a density-dependent model of bTB transmission in Michigan white-tailed deer,

1 An approved vaccine for bTB does not currently exist in the United States. A vaccine does exist that reduces
shedding of the organism but has failed to induce protection in a majority of field studies against natural
infection (Hogarth et al. 2006). Even if it were approved, vaccinating cattle would mean that the only way
to test true infections from vaccinated cattle would be post-mortem (Vordermeier et al. 2006). This means
regions that vaccinate would not be considered bTB-free, and sanctions could ensue. For this reason, vaccines
that are available and effective are not always used to inoculate livestock populations. With respect to deer,
the vaccine, though not currently effective, may eventually be useful for slowing spread. It would, however,
be expensive to administer and it would be difficult to identify previously vaccinated deer.
2 Frequency-dependent transmission occurs when the contact rate is independent of host density—that is, a
susceptible individual makes the same number of contacts with other animals regardless of the host population
density (McCallum et al. 2001).
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whereby prevalence can be managed via both harvests and habitat controls. They show that
the host-density threshold becomes endogenous when habitat controls also influence trans-
mission. Managers therefore do not simply manage the population relative to the threshold;
rather, they manage both the population and the threshold. Fenichel and Horan (2007) find
that prevalence rates are optimally reduced when two controls are used instead of a single
control, but that eradication may still not be optimal.

A limitation of the bioeconomic work just described is that the biological component
is a single-host-pathogen model. Only the wildlife population and disease dynamics are
modeled explicitly, while livestock-sector impacts are captured implicitly through an exoge-
nous damage function. Livestock population management or biosecurity choices that could
influence damages by affecting disease transmission between wildlife and livestock were
not explicitly modeled. Bicknell et al. (1999) model multiple populations in a bioeconomic
model of bTB transmission between Australian brush-tailed possums and dairy cattle. But
this was not truly a multi-host-pathogen model because no possum disease dynamics were
modeled. Unlike standard disease models in which the transmission rate is a function of the
infected population, Bicknell et al. modeled transmission from possums to cattle as
proportional to the difference between the entire local possum population and an exoge-
nous threshold.

The ecological literature has also focused primarily on single-host models. Dobson (2004),
however, identified the development of multi-host models as a priority. A major focus of the
emerging literature in this area is to identify the minimum amount of control effort required
to eradicate the pathogen. Diekmann et al. (1990) derived the basic reproduction ratio for a
pathogen (R0) as a function of control effort, and showed how a constant (i.e., time-invariant)
effort level could be chosen to eradicate the disease. Roberts and Heesterbeek (2003) criticized
this approach because the control efforts would have to be administered uniformly across all
hosts. They responded by deriving time-invariant, minimum control efforts that would need to
be targeted to individual host populations to achieve eradication. The resulting management
insights are of limited value, however, because they did not consider if disease eradication
was a desirable objective, they did not recommend specific effort levels other than minimums,
and the minimal efforts for one population were chosen independently of management
applied to other hosts. Moreover, they did not consider the impacts of targeting non-reservoir
hosts.

We expand the ecological literature on multi-host systems by recognizing that the eco-
nomic and ecological systems are jointly-determined, and by considering economic and
ecological tradeoffs when designing time-variant control strategies. A key result is that
the host-density thresholds are endogenous, whereas the ecological literature treats them
as exogenous (Dobson 2004; Roberts and Heesterbeek 2003). Even more importantly, we
show that targeting controls towards host reservoir populations may be inefficient relative to
controls such as biosecurity investments that can alter the reservoir status of these
populations.

Our model also expands the bioeconomic literature. In contrast to Fenichel and Horan’s
(2007) single-host model, we find that the host-density thresholds in the multiple-host case are
endogenous even under the conditions of a unitary vertical transmission rate and no feeding.
The flexibility to manage the thresholds within one or both populations provides managers
with improved targeting opportunities. This is important because the non-selective nature of
wildlife harvest and habitat controls results in second-best management that may limit the
optimal level of control. First-best solutions require controls that are selective according to
health status, while non-selective controls create excessive control costs: for instance, unin-
tended harvests of healthy animals impose costs on future generations, and reduced feeding
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lowers the in situ productivity of both infected and healthy animals. Improved targeting
reduces control costs, which provides incentives for greater control of the disease reservoir.
However, we find that improved targeting (e.g. through biosecurity investment) also reduces
damages, which creates an opposing incentive: reduce livestock-sector disease impacts so as
to reduce the degree to which wildlife serve as a disease reservoir. Altering the wildlife popu-
lation’s status as a reservoir reduces the incentives for wildlife disease control, so that disease
eradication is less likely to be optimal. The model and results presented here also expand the
growing literature on managing multiple species in an bioeconomic system (e.g., Gutierrez
and Regev 2005; Finnoff and Tschirhart 2003; Regev et al. 1998; Brock and Xepapadeas
2002).

These results are in contrast to conventional efforts to control epizootics transmitted among
and between wild and domestic (livestock) populations. Standard approaches often involve
attempts to eradicate all wildlife in an infected zone and depopulating infected livestock
herds. Wildlife are often targeted first, with the primary motivation to protect livestock
(particularly on small farms) (Leighton 2002). The wildlife-related benefits and costs from
undertaking alternative disease control investments tend to be poorly understood and seldom
considered.

2 Motivating Example

The models in this paper are based on the Michigan white-tailed deer example analyzed by
Horan and Wolf (2005) and Fenichel and Horan (2007). The example allows for comparison
with prior work. Moreover, several features of the problem facilitate the analysis. First, the
infected deer population is considered closed within a four-county area in the northeastern
part of the lower peninsula, known as deer management unit (DMU) 452 (Hicking 2002;
Schmitt et al. 1997). Tracking studies indicate that DMU 452 deer migrate little (Garner
2001), and the Michigan Department of Natural Resources (MDNR) manages deer in DMU
452 as a unique population and estimates a low likelihood of spread (Hicking 2002).

Second, human-environmental interactions, in the form of supplemental feeding, play a
major role in the problem. DMU 452 is the only known area in the United States where
bTB has established in wild deer, and conventional wisdom held that the disease was not
self-sustaining in wild deer populations (Hicking 2002). It is believed that area-specific
features—particularly feeding programs that encourage deer to congregate—have enabled
the disease to become endemic (Hicking 2002). Additionally, deer density in the region has
been elevated about three and half times historic densities by feeding programs (O’Brien
et al. 2002). The economic reason for providing this food is to boost natural productivity of
the deer via an increase in the effective carrying capacity. But feeding also leads to increased
transmission of the disease as deer congregate, and the supplementary food could also reduce
disease-related mortality by supporting sick animals.

The disease has spread from deer to local livestock. Michigan lost its bTB accredited-
free status in 2000 and was required to adopt a testing and control program for all cattle,
goats, bison, and captive cervids. In addition, other states can bar imports of Michigan live-
stock at their discretion. Michigan received “split state” status for bTB in 2004, resulting
in two disease management zones with separate requirements for animal movement, iden-
tification and testing. This status came about because extensive testing found the disease
confined to the northeast corner of Michigan’s lower peninsula, with regulatory costs now
primarily confined to this area. Michigan agriculture supports culling deer to eradicate the
disease. However, such extreme measures could be very costly, particularly since the cattle
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sector is small (USDA-NASS 2002) and marginally profitable (Wittenberg and Black 2004)
while deer hunting generates significant economic value in the infected region (Leefers et al.
1998).

3 A Multiple-host Model of bTB in Michigan Deer and Cattle

Consider a wildlife (deer) population, ND , and a livestock (cattle) population, NC , that
inhabit a particular land area.3 Deer-cattle contact is possible in the absence of biose-
curity measures. Each population Ni (i = C, D) is partitioned into two health classes,
Ni = Ni S + Ni I , where Ni S represents susceptible (healthy) animals and Ni I represents in-
fected animals. Four processes affect the net growth of each sub-population Niz (i = C, D;
z = S, I ): (i) net growth, Giz (a measure of surplus production that combines birth and
natural mortality processes), (ii) mortality due to the disease Mi I (which only applies to the
infected population), (iii) new infections via transmission from population i to population j ,
Ti j , and (iv) harvests, hiz .

First consider growth of the cattle population. As the cattle population is highly managed
with frequent and accurate testing for infected animals, net growth of cattle is assumed to
depend only on susceptible animals (i.e., GC I = 0) and to take the linear form GC S = aNC S ,
where a is the net birth rate for cattle (Rosen et al. 1994; Foster and Burt 1992).4

While disease mortality does exist in cattle, we do not model it explicitly because we
assume all cattle are tested and all test-positive cattle are removed before mortality can occur.
There are two types of cattle harvests: market sales, hC S , and disease-related harvests, hC I , so
that hC = hC S +hC I . Ideally, market sales come from only the susceptible population while
disease-related harvests come from only the infected population. This can be achieved with
diagnostic testing, provided the tests are sufficiently accurate. Bicknell et al. (1999) show
how to model testing errors (false positives and false negatives) in a bioeconomic framework.
However, evidence from the Michigan case indicates that both types of errors are essentially
zero (L. Judge Personal communication, 2006). This being the case, it is easily confirmed
that testing all cattle and harvesting all test-positive cattle in each period (i.e., hC I = NC I )
is optimal, provided testing and removal costs are sufficiently small—which we take to be
the case (Wolf and Ferris 2000).

With all test-positive cattle removed in each period, we make some simplifying assump-
tions to model the number of infectious cattle. Each period starts with a wholly susceptible
cattle stock, N 0

C S = NC , where the superscript “0” refers to the beginning of the period. Cat-
tle are initially infected through deer-cattle transmission, which is modeled by the standard
density-dependent transmission function (McCallum et al. 2001):

N 0
C I = TDC = (1 − γ K )βDC NC NDI (1)

where βDC represents the rate at which healthy cattle acquire infection after contacting
infectious deer. Here, infectious contacts are reduced by the level of biosecurity capital, K ,
which prevents inter-species contacts. The parameter γ indicates biosecurity effectiveness.

3 The multiple-host problem is readily extendable to spatially explicit problems, because a metapopulation
model is a special case of the multiple-host model.
4 It is worth emphasizing here that we are modeling the social planner/policy-maker management decision
with respect to the cattle population rather than farmer decisions. In the case of bTB, Michigan policy-makers
attempt to control the disease in cattle by using quarantines, testing and slaughter—all of which can be carefully
targeted and controlled.
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The infectious cattle then re-infect the deer population

TC D = (1 − γ K )βC D NDS N 0
C I , (2)

and spread the disease in the cattle population in a similar manner as deer-cattle transmission
(Bicknell et al. 1999), although K plays no role in this case5

TCC = βCC (NC − N 0
C I )N

0
C I (3)

Here NC − N 0
C I represents the susceptible cattle stock after the initial infection. Given this

specification, the total number of infected cattle that must be removed in each period is
hC I = NC I = (1 − γ K )βDC NC NDI (1 + βCC (NC − (1 − γ K )βDC NC NDI )). Growth of
the aggregate cattle population is

ṄC = aNC − hC I − hC S . (4)

The prevalence rate in cattle is NC I /NC , or

θC = (1 − γ K )βDC NDI (1 + βCC (NC − (1 − γ K )βDC NC NDI )). (5)

Neither hC S , h D , nor f (the biological control variables in our bioeconomic model below)
affect the current value of θC , but they do affect future values of θC through the state variables.

Now consider the deer population. Growth of the deer populations takes the forms

ṄDS = G DS −
∑

j=D,C

Tji − h DS (6)

ṄDI = G DI − MDI +
∑

j=D,C

Tji − h DI (7)

Following Horan and Wolf (2005), net growth of population NDz is given by the logistic
growth function, r NDz(1 − ND/k), where r is the intrinsic growth rate and k is the carrying
capacity. Underlying this specification is the assumption that fawns produced by infected
deer also become infected, either in utero or after birth through maternal contact. Following
Barlow (1991), the density-dependent component of the logistic equation, (1 − ND/k),
depends on the aggregate population because susceptible and infected wildlife compete for the
same habitat. We modify the density-dependent component by the impacts of supplemental
feeding, denoted by f . Assume the effective carrying capacity is increased by feeding for
f < f max —at that point another resource becomes limiting. Denote the effective carrying
capacity by k/(1 − τ f ), where τ < 1/ f max is a parameter. Supplemental feeding increases
the effective carrying capacity in a manner consistent with Walters (2001). As feeding is
costly and only provides productivity benefits for f < f max , f max is an upper bound on
feeding (this is made explicit in our simulation). Hence, net growth of population NDz is
G Dz = r NDz [1 − (ND/k)(1 − τ f )].

For the infected population, net growth is reduced by disease-induced mortality. The
disease mortality rate, in the absence of feeding programs, is denotedα. Supplemental feeding

5 Technically, in a continuous-time model, cattle should become infected at one instant, and then in the next
instant they should (i) spread of the disease back to deer, (ii) spread the disease to additional cattle, and
(iii) be tested and removed. The current approach condenses all these processes into a single instant. This
simplification reduces the number of state variables in the model while capturing all relevant processes. The
primary implication is that the costs and benefits associated with processes (i)–(iii) are moved forward by one
instant, which we do not believe introduces a significant error.
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may decrease the effective mortality rate so that total disease mortality in deer is MDI =
α(1 − χ f )NDI , where χ is a parameter.

Horizontal disease transmission (i.e., transmission not involving maternal contact) also
alters a population after net growth has occurred. Cattle-deer transmission was defined in
(2). For the deer-deer transmission, we adopt the standard density-dependent transmission
function

TDD = (1 + ω f )βDD NDS NDI (8)

where βDD represents the rate at which healthy deer acquire infection after contacting
infectious deer, and the parameter ω reflects the role of f on increasing infectious contacts.
Cattle-to-deer transmission is analogous to deer-cattle transmission

TC D = (1 − γ K )βC D NDS NC I . (9)

Finally, harvests reduce the stock after net growth has occurred. Deer harvests are non-
selective with regard to disease status: a manager can only choose the aggregate harvest, h D .
The harvest from health class z depends on the proportion of animals in health class z relative
to the aggregate population ND , such that h Dz = h D NDz/ND .

It is more intuitive and mathematically convenient to work in terms of the variables
ND and θD instead of NDS and NDI , where θD = NDI /ND is the infected proportion of
deer (the prevalence rate of the disease in deer). We note that ṄD = ṄDS + ṄDI and
θ̇D/θD = ṄDI /NDI − ṄD/ND . We rewrite Eqs. 6 and 7, fully specified, as

ṄD = r ND(1 − (ND/k)(1 − τ f ))− α(1 − χ f )θD ND − h D (10)

θ̇D = [
(1 + ω f )βDD ND + βC D(1 − γ K )NCθC/θD − α(1 − χ f )

]
θD(1 − θD) (11)

None of the controls affects θ̇D directly, but they all do so indirectly through their effects on
the state variables.

For given values of f and the state variables, the θ̇D = 0 isocline can be solved for

N̂D = �D ( f, K , θD, θC , NC ) (12)

which represents a host-density threshold as a function of feeding, biosecurity capital, both
prevalence rates, and the cattle population level. Disease prevalence is increasing (θ̇i > 0)
for values of Ni > N̂i , and prevalence is decreasing (θ̇i < 0) for values of Ni < N̂i . Disease
eradication results if ND < N̂D for long enough, but the threshold will vary over time as N̂D

endogenously depends on state and control variables. The threshold is decreasing in those
variables that increase the net (of disease mortality) force of infection onto deer: when the
force of infection is increased, θ̇D = 0 is restored by diminishing the deer density to reduce
infectious contacts and thereby generate an offsetting reduction in the force of infection.
Alternatively, the threshold is increasing in those variables that reduce the force of infection
onto deer: when the force of infection is reduced, θ̇D = 0 is restored by increasing the deer
density to generate an offsetting increase in the force of infection.

The threshold is decreasing in f because feeding increases infectious deer-to-deer contacts
and reduces disease mortality. The threshold is also decreasing in θC and NC , as increases in
these variables increase the force of infection from cattle to deer. The threshold is increasing
in K because more biosecurity results in fewer cross-species contacts. Finally, the threshold
is also increasing in θD because, other things equal, a larger θD means that more infectious
cattle-to-deer contacts are “wasted” on already-infected deer.
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In contrast to a single-host version of this model, the host-density threshold is endogenous
even in cases where feeding is not a choice variable. This is because harvests still directly
influence the magnitude of population j and indirectly influence θi . But in a single-host
model (βi j = 0 for i �= j) with no feeding ( f = 0), the host-density that satisfies θ̇D = 0 in
Eq. 11 is N̂D = α/βDD , which is exogenous and fixed.

The endogenous, time-varying thresholds described by Eq. 12 also contrast with the eco-
logical literature, which concentrates on threshold levels that arise at one particular state of
the world—a pre-disease equilibrium that represents the point of disease invasion (Diekmann
et al. 1990; Roberts and Heesterbeek 2003; Dobson 2004). Such thresholds are time-invariant
and exogenously-fixed—independent of all other states (as these are held constant when the
thresholds are derived). Moreover, the threshold-based control prescriptions that emerge from
that literature only indicate a minimum amount of effort required to eradicate the disease, and
do not indicate how to best target efforts differentially across host types or over time. In the
following section, we construct a bioeconomic model to explore economically optimal man-
agement. Management strategies derived under this approach are chosen with consideration
given to the full system dynamics and associated economic-ecological feedbacks.

4 A Bioeconomic Model

Suppose a social planner wishes to choose a population management and disease control
strategy to maximize the discounted net benefits of deer hunting and cattle management.
Traditionally, disease control in Michigan has focused on deer, with harvest and feeding
levels being the primary control variables used by deer managers (Hicking 2002).6 However,
choices made in the cattle sector must also be considered, for economic damages to this
sector depend on both deer management choices and the on-farm responses to the threat of
cattle infection by deer.

We begin with the hunting sector. Hunters gain utility from the actual process of hunting
deer and/or consuming meat and other deer products. Although harvests are non-selective,
harvest values depend on health status because infected animals are identified through post-
mortem testing (e.g., from lesions inside the carcass or examination of the tonsils), required
in Michigan. The (constant) marginal utility from harvesting healthy deer is denoted pD ,
which is not less than the (constant) marginal utility from harvesting infected deer, pDI , i.e.,
pD ≥ pDI . For simplicity, we set pDI = 0 so that harvests of infected animals yield no
benefits.7 The benefits from hunting are therefore pD(1 − θD)h D . Greater disease preva-
lence damages the hunting sector in terms of foregone harvest benefits. Assume harvests
occur according to the Schaefer harvest function (see Conrad and Clark 1987), h = q E ND ,
where E is hunting effort and q is the catchability coefficient. Assuming a unit cost of effort,
c, total harvesting costs, restricted on the in situ stock, are (c/q)h D/ND . The unit cost of
supplemental feed is assumed to be w.

Now consider the cattle sector. Healthy cattle have a (constant) marginal value of pC ,
while infected cattle have no value (their carcasses are destroyed). The benefits from cattle
sales therefore equal the revenue from cattle sales, pC hC S . The cost of maintaining the herd

6 Michigan announced a goal of eradicating the disease by 2010. To that end, the wild white-tailed deer
population in the area was to be decreased through increased sales of hunting licenses. In addition, the practice
of legally feeding deer in the infected area was ended.
7 The qualitative nature of the results would not be affected if instead pDI > 0, provided that pD ≥ pDI .
However, setting pDI > 0 would affect the trajectories in the numerical exercise. Fenichel and Horan (2007)
explore this issue and find there is little impact.
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is m N 2
C , where m is a parameter. We assume test-positive cattle are removed costlessly.

Biosecurity investments Z are made at a constant cost of u. Capital accumulates according
to the following equation of motion, where ζ represents depreciation:

K̇ = Z − ζK . (13)

Given the discount rateρ, an economically optimal allocation of harvests, feeding, biosecurity
investments, and cattle stocking rates solves

Max
h D ,hC S , f,Z

SN B =
∫ ∞

0
[pD(1 − θD)h D + pC hC S − (c/q)h D/ND − w f − m N 2

C − u Z ]
×e−ρt dt, (14)

subject to the equations of motion (4), (10), (11), and (13), Eq. 5, the initial values of the state
variables, ND0, θD0, NC0 and K0, and the feasibility conditions h D, I ≥ 0, 0 ≤ f ≤ f max ,
and K ≤ 1/γ .8 The current value Hamiltonian is

H = pD(1 − θD)h D + pC hC S − (c/q)h D/ND − w f − m N 2
C − u Z

+
∑

i=C,D

λi Ṅi + φD θ̇D + ψ K̇ (15)

where λi , φi and ψ are the co-state variables associated with Ni , θi and K , respectively.
The marginal impact of cattle sales on the Hamiltonian is

∂H/∂hC S = pC − λC . (16)

The RHS of expression (16) is the linear coefficient of cattle sales in the Hamiltonian. Cattle
sales should be as small as possible when ∂H/∂hC S < 0, and they should be as large as
possible when ∂H/∂hC S > 0. A singular path for cattle sales should be followed whenever
∂H/∂hC S = 0.

The marginal impact of biosecurity investments on the Hamiltonian is given by

∂H/∂Z = −u + ψ. (17)

If this expression is positive so that the marginal value of capital exceeds the marginal cost of
investment, investments should be set at their maximum levels. If this expression is negative
then Z = 0 is optimal. The singular solution is pursued when marginal investment costs and
the marginal value of capital are equated. In this case, ψ̇ = 0 since u is fixed.

The marginal impact of deer harvests on the Hamiltonian is given by

∂H/∂h D = p(1 − θD)− c/(q ND)− λD . (18)

The first two RHS terms represent the marginal rents from harvesting deer. As the harvests
are non-selective, the marginal rents are decreasing in the prevalence rate. If the RHS of (18)
is positive so that marginal rents exceed the marginal user cost, then harvests should be set
at their maximum levels. No harvesting should occur if the RHS of (18) is negative. The
singular solution is pursued when marginal rents and the marginal user cost are equated.

Now consider the marginal impacts of feeding on the Hamiltonian

∂H/∂ f = −w + λD∂ ṄD/∂ f + φD∂θ̇D/∂ f. (19)

8 Technically, the constraint on f should be 0 ≤ f ≤ min{ f max , 1/χ}, but f max<1/χ in our numerical
example. The feasibility conditions are explicit in our numerical example, though we do not model them here
analytically.
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The RHS of expression (19) is the linear coefficient of feeding in the Hamiltonian. The
first RHS term is the marginal cost of providing supplemental feed. The second RHS term
is the marginal benefit of feeding due to its role in increasing deer productivity. The third
term, which is negative because φD < 0 (i.e., greater disease prevalence reduces welfare,
ceteris paribus), is the marginal cost of feeding due to its role of increasing disease preva-
lence. Specifically, increased feeding reduces the host-density threshold for deer, resulting
in increased prevalence ceteris paribus. Hence, supplemental feeding can be viewed as an
investment in both the productivity of deer stock and of the disease. This is because, like
harvests, supplemental feeding is non-selective with respect to health status. If feeding were
selective, then only healthy deer would be fed and the third RHS term would vanish.

If the RHS of expression (19) is positive, then feeding is optimally set at its maximum
level, f max . If the expression is negative, then f = 0 is optimal. The singular solution for
f should be followed whenever the RHS of condition (19) vanishes, thereby equating the
marginal benefits and marginal costs of feeding.

The conditions for an optimal solution also include four adjoint equations that must hold
at each point in time.9 These can be expressed as the following “golden rule” equations:

ρ = a +
[
−

(
∂θC

∂NC
NC + θC

)
+ φD

λC

∂θ̇D

∂NC

]
+ λ̇C

λC
− 2m NC

λC
(20)
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+

[
φD

λD

∂θ̇D

∂ND
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λD

∂θC

∂ND
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]
+ λ̇D
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+ 1

λD

ch D

q N 2
D

(21)

ρ = λD

φD

∂ ṄD

∂θD
+

[
∂θ̇D

∂θD
− λC

φD

∂θC

∂θD
NC

]
+ φ̇D

φD
− pDh D

φD
(22)

ρ = −λC

ψ

∂θC

∂K
NC + φD

ψ

∂θ̇D

∂K
+ ψ̇

ψ
− ζ (23)

Equation 20 equates the rate of return from holding cattle (the RHS) to its opportunity cost
(ρ). The first RHS term is the marginal impact of cattle on reproduction. The second RHS
term (in brackets) is the impact of more cattle on disease transmission in both populations:
more cattle create more opportunities for within-species and cross-species infectious contacts.
Alternatively, a larger cattle population has the adverse effect of reducing the host-density
threshold for deer. This endogenous-threshold effect cannot arise in single-host models. The
remaining RHS terms represent the additional benefits (i.e., capital gain) and maintenance
costs of investing in a larger cattle population at the margin. Note that the term in brackets
vanishes when there is no disease or when K = 1/γ , so that the resulting expression defines
the optimal cattle stock in the absence of disease. When a disease is present, then the term in
brackets is negative and reduces the rate of return to holding cattle. Other things equal, NC

must fall in the presence of disease in order to re-equilibrate the rate of return to ρ.

9 The following condition is also necessary along a singular path associated with control variable x(x = hC ,

h D , f, Z) (Bryson and Ho 1975, p. 256): (−1)v ∂
∂x

[(
∂
∂t

)2v
∂H
∂x

]
≤ 0 , v = 0, 1, 2, . . .. This condition does

not have an economic interpretation, and in the present model it can only be verified numerically. We have
verified that this condition is satisfied throughout our numerical model. There are “no sufficient conditions for
optimality of singular arcs” (Bryson and Ho 1975, p. 247). But see footnote 13 on the steps we took to verify
the optimality of our solution.
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Equation 21 equates the rate of return from holding deer (the RHS) to its opportunity
cost (ρ). This equation has the same interpretation as Eq. 20, with two exceptions. First, an
increase in the deer population increases cattle infections without affecting the host-density
threshold for cattle. This is because our assumptions about immediately culling infected cattle
eliminate the relevance of the threshold concept in cattle. Second, the final RHS term in (21)
reflects a marginal cost savings (as opposed to an additional cost as in (20)) as harvesting
costs are reduced for a larger deer stock. Finally, analogous to expression (20), the term in
brackets vanishes when there is no disease so that the resulting expression defines the optimal
deer stock in the absence of disease. When disease is present, then the term in brackets is
negative and reduces the rate of return to holding deer. Other things equal, either ND must
fall or f must increase in the presence of a disease in order to re-equilibrate the rate of return
to ρ.

Equation 22 is the adjoint condition associated with disease prevalence in deer. This
condition equates the marginal benefit from investing elsewhere in the economy (ρ) to the
marginal cost of re-directing resources away from disease control (the RHS). The first RHS
term is the marginal impact of increased prevalence within deer on deer population growth.
The second RHS term (in brackets) is the marginal impact of increased prevalence within
deer on changes in disease prevalence within both populations: a larger prevalence within
deer creates more opportunities for infectious within-species and cross-species contacts. An
alternative way to view the cross-species term is as the marginal degree to which deer are
a disease reservoir for cattle. The remaining RHS terms represent, respectively, the capital
loss from having greater prevalence among deer, and marginal damages to hunters resulting
from greater prevalence.

Finally, Eq. 23 equates the opportunity cost of capital (ρ) with the marginal benefits of
employing capital as biosecurity (the RHS). The first RHS term is the marginal impact of
biosecurity on reducing disease prevalence in cattle, achieved by reducing the degree to
which deer are a disease reservoir for cattle. The second RHS term is the marginal impact
of biosecurity on reducing disease prevalence in deer: more biosecurity reduces contacts
between healthy deer and infected cattle, thereby increasing the host-density threshold for
deer. The last two RHS terms represent the capital gains associated with biosecurity less
depreciation.

The adjoint equations reflect the same tradeoffs as in the single-host case (e.g., Fenichel
and Horan 2007), with three exceptions. First is the fact that there are now four states to
manage (and hence four adjoint equations) as opposed to two in the single-host case without
biosecurity. The second exception is the addition of the cross-host marginal effects in the
current framework. The cross-host impacts on changes in deer prevalence are particularly
important because these reflect how changes in the cattle population and in capital impact the
host-density threshold for deer. The third difference is the effect of biosecurity on reducing the
reservoir status of deer. These differences, relative to single-host models without biosecurity
(which implicitly treat livestock management as fixed), yield more flexibility in controlling
impacts of the disease. Here, management is no longer fixed, which reduces livestock-sector
damages (as well as transmission back to deer) and eases the pressure to reduce prevalence
in deer.

The optimal solutions for control variables in a linear control problem are feedback rules,
with the optimal values at each point in time depending on the current state (Conrad and
Clark 1987). The optimal feedback rules can involve various combinations of singular or
non-singular controls, depending on the current state. A fully unconstrained, or quadruple-
singular, solution is optimally pursued when (16)–(19) all vanish. Partial-singular solutions
are optimal when exogenous constraints for one, two, or three control variables are binding

123



58 R. D. Horan et al.

over some intervals of the optimal solution; that is, one, two, or three of the conditions
(16)–(19) vanish. Partial-singular solutions arise within a blocked interval, a period of time
when one or more of the controls is “blocked” or constrained from following the quadruple-
singular path (Arrow 1968; Clark 1990). Finally, a fully constrained solution is pursued
when all control variables are subject to binding constraints along an interval of the optimal
solution.

With four control variables, there are too many combinations of potential partial and
fully singular solutions to analytically derive each solution type here (see the Appendix for
derivations of three types of partial singular solutions that arise in the numerical example).
Moreover, the overall solution may involve a series of free and blocked intervals over time,
with each interval corresponding to a different type of partial or fully singular solution.
The potential combinations of possibilities render analytical analysis intractable, particularly
since analysis of when to pursue blocked or free intervals is inherently numeric (Arrow 1968).
We therefore examine the problem numerically.

5 Numerical Example

The data used to parameterize the model are provided in Table 1.10 A common approach
is to first analyze the fully unconstrained solution. However, given the parameterization in
Table 1, we find that a fully unconstrained, or quadruple singular solution, does not exist for
our numerical example. The first step is to figure out which variables, if any, should face a
binding constraint at the initial values of the state variables.

5.1 Initial Choices for Supplemental Feeding and Biosecurity Capital

Fenichel and Horan (2007) find that f is initially constrained at f max for the case in which
there is no livestock-sector response to disease. Incorporating a livestock-sector response,
as we do here, only reduces disease-related damages and further increases the incentives to
feed. Indeed, in the extreme case with K = 1/γ to eliminate cross-species transmission
and hence livestock-sector damages, we find f is still initially constrained to f max . Feeding
represents an investment in deer productivity, enabling larger harvests even when the deer
population is being reduced—which we show below is optimal.

We begin by setting f = f max and analyzing the partial singular solution associated
with this case. The Appendix illustrates that the cattle population and biosecurity capital in
this case are of the form NC (ND, θD) and K (ND, θD), so that the problem can be analyzed
in (ND, θD) space. Given f = f max , we find K (ND0, θD0) = 75.5, which is close to but
less than the maximum level of 1/γ = 80. A pulse investment to K = 75.5 is therefore
optimal. Immediately after this initial investment, we find there are no incentives for addi-
tional biosecurity investment. This is because cattle prevalence begins to decline as a result of
biosecurity, reducing cattle-sector damages and therefore any incentives for additional biose-
curity investment. Moreover, there are incentives to immediately reduce the deer population
(discussed below), which further reduces infectious cross-species contacts and the incentives
for additional biosecurity investment. If we evaluate the optimal management path that arises
when K is held fixed at 75.5 (described in detail below), we find that the marginal value of
capital, as calculated from the optimized Hamiltonian, (∂H∗/∂K |K=75.5)/ρ (see Rondeau

10 Given the ongoing uncertainty and complexity associated with the Michigan bTB problem, the following
analysis is best viewed as a numerical example that illustrates the economic intuition behind optimal disease
management.
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Table 1 Parameter values for numerical example

Parameter Description Value Source (if different from
Horan and Wolf 2005)a

ND0 Initial deer population size 13,298
θD0 Initial deer prevalence 0.023
NC0 Initial cattle population 2800 USDA-NASS (1996)
γ Marginal impact of capital on

cross-species transmission
(=1/#farms)

1/80 USDA-NASS (1996)

r Deer intrinsic growth rate 0.5703
k Deer carrying capacity 14,049
τ Marginal impact of feeding on k 8.0×10−5

f max Upper bound for feeding 10,000
α Disease induced mortality rate 0.3556
χ Marginal impact of feeding on α 5.32×10−5

βDD Deer–deer transmission
coefficient

3.39×10−5 Fenichel and Horan (2007)

ω Marginal impact of feeding on
βDD

2.64×10−6

βDC Deer–cattle transmission
coefficient

4.4×10−5 Calibrated to generate cattle
prevalence rate consistent with
current estimates

βC D Cattle–deer transmission
coefficient

4.4×10−5

βCC Cattle–cattle transmission
coefficient

2.7×10−5 USDA-NASS (1996)

a Cattle growth rate 0.67 Bicknell et al. (1999)
pD Value of harvested healthy deer 1270.80
c/q Marginal harvesting cost 231,192
w Unit cost of feeding 36.53
pC Value of harvested healthy cattle 770 Wittenberg and Black (2004)

and Wittenberg and Wolf (2004)
m Cattle maintenance cost parameter 0.225 Wittenberg and Black (2004)

and Wittenberg and Wolf (2004)
u

Unit cost of biosecurity investment 28,500 British Columbia Ministry of
Agriculture, Food and Fisheries
(2002)

ζ Biosecurity depreciation rate 0 Assumption
ρ Discount rate 0.05 Assumption

a Values are derived based on data presented in the original sources. Where no source is provided, see Horan
and Wolf (2005) for derivations and original sources

2001), is less than the unit cost of investment, u, along this entire path. This means that all
investment in biosecurity occurs in the initial period.11

The biosecurity investment significantly reduces cross-species transmission, and this has
implications for the adjoint conditions associated with the cattle and deer populations and
deer prevalence. With respect to the cattle population, values of K close to 1/γ significantly
reduce the bracketed term in condition (20). This reduces the incentives to adjust the cattle
population in response to changes in bTB prevalence (particularly within the deer herd). With

11 If investment costs were convex, then it becomes too costly to make all biosecurity investments in a single
period. This also means that other controls (e.g., in the cattle or deer sectors) would become relatively cheaper,
and substitution of these controls for biosecurity would occur.
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respect to the deer population, values of K close to 1/γ significantly reduce the second term
in brackets (the cross-species term) in condition (21). This reduces the incentives to adjust
the deer population as a means of protecting the cattle population from disease. Finally, with
respect to deer disease prevalence, values of K close to 1/γ significantly reduce the second
term in brackets (the cross-species term) in condition (22). This means that the status of
deer as a disease reservoir for cattle is significantly diminished, and as a consequence there
are reduced incentives to invest in reducing θD (e.g., via reduced feeding or reduced deer
population) as a means of protecting the cattle population from infection.

In sum, the large optimal value of K reduces feedbacks between the deer and cattle sectors.
These feedbacks are not entirely eliminated, however, since the optimal value of K does not
eliminate cross-species disease transmission. Eliminating cross-species disease externalities
becomes exceedingly costly relative to other disease control activities and adaptation, and this
result is consistent with the general notion that the marginal cost of eliminating an externality
often exceeds the marginal benefit (Hanley et al. 1997). Still, as we indicate below, the cross-
sector feedbacks are greatly diminished when K = 75.5, so that the two sectors are almost
(though not entirely) managed independently.

The result of heavily targeting the cattle sector, via culls of infected cattle and biosecurity,
to reduce cross-species transmission is in stark contrast to the more conventional policy
recommendation of eradicating infected wildlife populations in order to protect livestock.
The reason for our finding is that all deer-sector controls (harvesting and feeding) are non-
selective, which makes the use of these controls particularly costly given that deer hunting is
a highly valued activity in this region (Leefers et al. 1998). In contrast, cattle-sector controls
are selective, which makes the use of these controls particularly inexpensive given that the
cattle sector in this region is not very profitable (Wittenberg and Black 2004).

5.2 The Deer Sector: Management When Feeding and Biosecurity Investment
are Constrained

Biosecurity capital is fixed along the entire optimal path, and feeding is initially constrained
to f = f max . The constraint on feeding is only temporary, as the complete solution involves
moving across different types of partial singular solutions—each of which can be viewed as
a sub-path. However, as two of the sub-paths involve constraints on feeding, it is informative
to first describe the dynamics for these constrained cases prior to discussing the complete so-
lution. We also note that, though optimal outcomes for the deer and cattle sectors are jointly-
determined, optimal values of NC and hC are of the form NC (ND, θD) and hC (ND, θD)

(see Appendix). Our discussion therefore centers on deer-sector dynamics in (ND, θD)

space.
First consider the partial singular solution when Z = 0 (with K = 75.5) and f = f max .

The phase plane is presented in Fig. 1a. The darkened line with the arrows represents the
separatrices (the partial singular solution) leading to a saddle point steady state at C . Starting
at point A, the optimal solution is a pulse harvest to jump to the separatrix at point B, and
then follow the separatrix to the steady state.12 The separatrix is followed, as opposed to
moving directly to the steady state along a most rapid approach path (as is common in many

12 The optimality of this strategy can be shown using the approach outlined by Mesterton-Gibbons (1987)
and also used by Fenichel and Horan (2007). We briefly outline the arguments here (see those other papers
for details, which are straightforward but somewhat tedious). With K and f fixed, the singular solution for h
is a feedback rule h D(ND, θD) (see Appendix). As this feedback rule is feasible over much of the state space
(ND, θD), different singular paths arise for different initial states. All of these paths, except the separatrix,
lead away from the interior steady state to outcomes where the optimality conditions are eventually violated.
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Fig. 1 Optimal management when (a) f = f max , and (b) f = 0

autonomous, linear resource problems; Clark 1990), due to the second-best nature of the
problem. Specifically, the use of non-selective controls creates adjustment costs that lead to
slower adjustment. This feature arises even when f is not constrained.

Along the separatrix, θD increases while ND falls. θD rises along the separatrix because
reductions in ND reduce the rate of return to reducing disease prevalence. This is particularly
true since it is costly to reduce θD when f is fixed at f = f max . Rather, the rate of return
condition (22) is satisfied by allowing θD to increase. In contrast, ND falls along the separatrix
because increases in θD reduce the return to holding deer in situ (see condition (21)). The rate
of return condition (21) is satisfied by reducing ND , which increases the marginal growth of
the deer population, all else equal. Eventually a steady state is achieved at point C . However,
moving to the steady state is only optimal if f = f max remains optimal everywhere along
this solution path. We show below that f = f max does not remain optimal. Prior to reaching
the steady state, the system moves into a region of the state space where f is no longer
constrained.

Next consider the partial singular solution when Z = 0 (with K = 75.5) and f = 0.
The phase plane is presented in Fig. 1b. The darkened line with the arrows represents the
separatrix leading to a saddle point steady state at C , at which the disease is eradicated. As
with Fig. 1a, the optimal solution is a pulse harvest to the separatrix (the partial singular
solution), and then following the separatrix, to the steady state C . The economic intuition is
the opposite of the case of Fig. 1a: the return from reducing θD is high, particularly since
f is constrained to f = 0. These reductions in θD in turn increase the rate of return to
holding deer in situ, creating incentives to grow the deer population. Of course, moving to
the steady state is only optimal if f = 0 remains optimal everywhere along this solution
path, but we show below that f = 0 does not remain optimal along the separatrix. Prior to
reaching the steady state, the system moves into a region of the state space where f is no
longer constrained.

Footnote 12 continued
The separatrix is the lone path that always satisfies the necessary conditions for optimality, and so the pulse
harvest to this path is required.
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Fig. 2 Deer sector phase plane
for the numerical example
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5.3 The Deer Sector: The Complete Solution

The complete numerical solution for managing the deer sector is presented in Fig. 2.13 The
phase plane is partitioned into three sections. The section to the right of the f = f max

boundary is the relevant portion of the phase plane from Fig. 1a (for the partial singular
solution in which Z = 0 and f = f max ). The section to the left of the f = 0 boundary is
the relevant portion of the phase plane from Fig. 1b (for the partial singular solution in which
Z = 0 and f = 0). There is no equilibrium in either of these constrained regions.

The central region between the f = 0 and f = f max boundaries represents the phase
plane for the partial singular solution in which only Z is fixed (i.e., when the solution is
singular with respect to the controls: deer harvests, feeding, and cattle sales). We denote this
as the triple singular solution. The isoclines for the triple singular solution intersect in the
interior of the central region. This intersection defines an equilibrium at the point ND = 6890
and θD = 0.076. The eigenvalues of the differential equation system, linearized at the
equilibrium point, are complex with positive real parts. This indicates that the equilibrium
is an unstable focus (Conrad and Clark 1987). It is only optimal to be at this point if the
system starts at this point. Otherwise, it is optimal to spiral away from this point. The f = 0
and f = f max boundaries are defined by the loci of points for which values of f in the
triple singular solution become constrained at f (ND, θD) = 0 and f (ND, θD) = f max ,
respectively.

13 We have taken a number of steps to verify the optimality of this solution. First, we examined the optimality
of the optimal control solution by numerically evaluating welfare along alternative paths. For instance, we
considered a variety of alternative paths that would have moved the system either more quickly or more
slowly from the initial point to the f = f max curve, while also satisfying the necessary conditions. We also
evaluated jumps directly to the cycle in the central region or directly to the f = 0 curve. We did the same sort
of exercise each time there was movement from one “type” of solution to another. In each case, the plan in
Fig. 2 was optimal. Second, we developed a discrete-time approximation of the model and solved it using math
programming (in AD Model Builder, Otter Research). We found the resulting outcome to be qualitatively the
same and numerically very similar to the one presented in Fig. 2. Because the optimal control specification
allows us to solve for the exact feedback rules, facilitates economic interpretations, and is more amenable to
phase plane analysis, we have based our numerical analysis on the optimal control results.
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Fig. 3 Time paths of optimally
managed deer and cattle
populations (points of reference
A–D correspond to Fig. 2)

10 20 30 40 50 60 70 80

200 

400 

600 

800 

1000 

1200 

2000

4000

6000

8000

10000

12000

14000

Time 
D

en
si

ty
 o

f 
ca

ttl
e 

po
pu

la
tio

n,
 N

C

D
en

si
ty

 o
f 

de
er

 p
op

ul
at

io
n,

 N
CCattle

Cattle (disease free) 

DeerB

C

D

A

Management is initiated at the initial state values ND0 and θD0, represented by point A
in Fig. 2. After the pulse investment to K = 75.5, f = f max remains optimal as none of
the other states has changed, and as the reduction in cross-species infections only results in
greater incentives to feed. An optimal plan is to jump to the separatrix in the f = f max region
(as in Fig. 1a) and then follow that singular arc until intersecting the f = f max boundary.
Once at the f = f max boundary, the phase dynamics from the adjoining isosectors result
in the optimal path traveling up the f = f max boundary before moving into the central
region. The optimal trajectory then moves into the northeast quadrant of the central region.
Deer density, ND , continues to fall while θD continues to increase along this interior path.
The incentives driving this movement are the same as those that had driven the movement
along the separatrix, though the incentives for allowing θD to increase are diminished as
f (ND, θD) declines below f max . The reduction in f substitutes for population controls in
managing θD , increasing the rate of return to disease control. In turn, the slower increases
in θD diminish the incentives to further reduce ND , though this is offset somewhat by the
smaller feeding levels which reduce the rate of return to holding deer in situ. The result is
that the state variables move more slowly in the interior isosector than they did along the
separatrix where f = f max . This can be seen in Fig. 3 for the deer population.

The optimal path begins to rotate around the focus point to intersect the θ̇D = 0 isocline.
At this point, θD has reached a critical level such that there are now sufficient incentives to
reduce θD . The value of ND that coincides with the θ̇D = 0 isocline is the optimal host-
density threshold. Along an optimal path, the relation for the host-density threshold in Eq. 12
becomes ND = �D ( f (ND, θD), K ∗, θD, θC (ND, θD), NC (ND, θD)). This expression can
be re-solved for the optimal host density threshold ND = ÑD(θD, K ∗), which reflects both
ecological and economic considerations. In particular, the value of f on this curve is smaller
for smaller values of θD and larger values of ND , reflecting the control the manager has
over the threshold as well as the tradeoffs the manager makes between feeding and popula-
tion controls. At higher prevalence rates, the manager prefers to reduce prevalence through
population controls. This is because population controls have a greater marginal impact on
transmission when prevalence is high. Moreover, by allowing larger rates of supplemental
feeding, greater harvest levels are required to reduce the population and this generates greater
harvesting benefits. At lower prevalence rates, population controls have little marginal impact
on reducing transmission and so reducing feeding becomes the preferred approach to further
reducing prevalence.

The optimal path crosses the θ̇D = 0 isocline and moves southwesterly. Although θD falls,
which increases the rate of return to holding deer, the further reductions in feeding along
this path more than offsets this effect and ND continues to fall. The optimal path eventually
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intersects the f = 0 boundary. Note that the separatrix associated with the f = 0 case
crosses the f = 0 boundary above where the optimal path intersects the boundary. This
means the separatrix lies to the right of the f = 0 boundary in the locale of the intersection
and below, so that a jump to the f = 0 boundary would be optimal for any point to the
left of the boundary. Hence, the phase arrows in the relevant portion of the f = 0 region
point towards the boundary. The result is that the optimal path is pushed down the f = 0
boundary.

The path eventually re-emerges into the central region, indicating that it is optimal to
re-introduce supplemental feeding to further increase deer productivity. Prevalence is
decreasing along this path while the deer population is increasing. The incentives driving
this movement are the same as those that had driven the movement along the separatrix in
Fig. 1b, though the incentives for decreasing θD are diminished as f is increased above zero.
In turn, this reduces the incentives for increasing ND relative to what would have occurred
along the separatrix.

The optimal path cycles around the focus point and eventually crosses the host-density
threshold. At this point, prevalence has fallen to such low levels that the rate of return to
disease control is reduced to the point that it becomes optimal to allow θD to increase,
driven by increases in both ND and f . Feeding is increased as it represents an investment in
deer productivity, increasing the population while enabling larger harvests along the singular
path. The optimal path eventually intersects the f = f max boundary, at which point it
becomes optimal to moves as quickly as possible to the separatrix within the f = f max

region. This requires forgoing deer harvests for a brief period. The cycle begins again and
continues.

The solution is qualitatively similar to Horan and Wolf’s (2005) and Fenichel and Horan’s
(2007) solutions, except that optimal prevalence rates are much larger in the present solution.
For instance, the largest prevalence rate along the current path is more than five times larger
than the largest rate in the solution to those other models. The larger rates in the present model
arise because marginal damages to the cattle sector are small due to biosecurity investment,
whereas marginal damages to the cattle industry were assumed to be positive and constant
in Horan and Wolf’s and Fenichel and Horan’s models.

5.4 The Cattle Sector

The optimal time-path of the cattle stock is illustrated in Fig. 3. After an initial “bang-
bang” adjustment, the optimal level of cattle is almost constant and only slightly below
the level that would arise in the absence of deer-cattle transmission, i.e., the constant sin-
gular value of NC that solves the following golden rule derived from (16) and (20) when
K = 1/γ

ρ = a − 2m NC/pC . (24)

The level in Fig. 3 is not constant, but dips only slightly when the deer population or the deer
prevalence rate are at their highest levels. The cattle sector exhibits virtually no response to
changes in the deer sector. Moreover, since cattle-sector disease damages are small due to
the large biosecurity investment, the cattle sector has very little impact on management in
the deer sector (this is verified by solving the model with K = 1/γ ). For all intents and
purposes, the two sectors are managed separately once the large biosecurity investment has
been made.
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Fig. 4 Time paths of deer and
cattle for the base case model
with no biosecurity
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6 Sensitivity Analysis

We now consider the sensitivity of results to changes in the model parameters. To conserve
on space we focus on two scenarios: an increase in the cattle price (so that the cattle sector
is more valuable) and a restriction on biosecurity investments. The results for changes in
other parameters are qualitatively similar to those reported in Fenichel and Horan’s (2007)
sensitivity analysis, and so we do not devote space to those scenarios here.

First, consider an increase in the cattle price, pC , when there are no restrictions on biose-
curity investments. This increased price increases optimal cattle stocks. With little or no
risk from infection, condition (24) suggests that the cattle stock increases in proportion to
the price increase. Together, the price increase and the increased cattle stock increase the
marginal value of biosecurity investments, resulting in more investment and even fewer
infectious contacts within the cattle sector. A 32% or greater increase in pC relative to the
base case results in maximum biosecurity investment, K = 1/γ .

Now consider restrictions on the use of biosecurity. Specifically, suppose no biosecurity
capital is available. The results for the base case parameters indicate that management of the
deer sector is minimally affected. Rather, controls are shifted from biosecurity investments
to reductions in the cattle stock during periods of high risk. The time paths of the deer and
cattle stocks are shown in Fig. 4 to be inversely correlated. The cattle population hovers close
to its no-disease value (given by Eq. 24) when the deer population is low, as this corresponds
to low deer-to-cattle and cattle-to-deer transmission. However, the cattle stock is reduced
by approximately 60% when the deer population is at its highest levels, corresponding to
periods of high risk which reduce cattle-sector returns (see Eq. 20). The reduction in cattle
also help to lower deer prevalence, as targeted reductions in the cattle population reduce the
“force of infection” from cattle to deer.

Finally, consider the combination of no biosecurity and a ten-fold increase in cattle prices,
representing a situation in which cattle are much more highly valued relative to deer. In this
case the cattle population is essentially constant at its no-disease value (given by Eq. 24).
Virtually all controls in this case occur in the deer sector due to the fact that cattle are now
significantly more valuable than deer. The results for the deer sector are illustrated in Fig. 5.
Deer populations and prevalence rates are significantly reduced (relative to the path in Fig. 2)
along the optimal cycle due to increased harvesting and reduced feeding levels, even though
both of these are non-selective controls. In particular, the lower portion of the cycle turns up
prior to hitting the f max boundary as feeding is reduced relative to the base case scenario in
Fig. 2, and the cycle bends backward more quickly as harvests are increased relative to the
base case. These adjustments are made to “protect” the more valuable cattle sector.
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Fig. 5 Deer-prevalence dynamics when cattle are ten times more valuable

7 Conclusions

Recommendations for managing animal diseases have tended to focus on disease eradication
as the primary objective. To this end, the “rule of thumb” in the ecological literature is that
reservoir host populations need to be managed relative to a host-density threshold. Yet, the
analytical basis for these recommendations treats a host’s reservoir status and host-density
threshold as fixed. Moreover, these recommendations have ignored economic tradeoffs, even
though disease management is inherently an economic problem due to the costs and benefits
associated with reducing disease prevalence.

This paper is one of a series that investigates the application of economics to diseases
involving wildlife and livestock (Bicknell et al. 1999; Horan and Wolf 2005; Fenichel and
Horan 2007). Two themes have emerged from this bioeconomic literature. First, as is a
common result in bioeconomic models, the ecological and economic systems are jointly
determined. In a single-host model, Fenichel and Horan (2007) showed the host-density
threshold to be an endogenous function of economic choices, under certain circumstances.
In the present multiple-host framework, we found the endogeneity of host-density thresholds
to be a more general result due to the species’ (ecological) interactions. We also found it is
possible to alter the degree to which a species is a disease reservoir, by investing in biosecurity
to reduce cross-species transmission.

The second theme in the bioeconomic literature is how to target resources to best manage
a disease outbreak. In many wildlife settings, controls cannot be targeted selectively across
infected and susceptible populations—they are non-selective with respect to disease status.
This generally reduces the efficiency of wildlife controls. Horan and Wolf (2005) and Fenichel
and Horan (2007) discuss tradeoffs in targeting non-selective population and habitat controls
(i.e., supplemental feeding) in a single-host model and find that disease eradication is not
optimal, though having several control options can improve welfare and lead to lower disease
prevalence (Fenichel and Horan 2007). Bicknell et al. (1999) discuss the targeting of controls
across wildlife and livestock species when wildlife serve as a disease reservoir for livestock
and when livestock and wildlife controls can be targeted selectively. They find a mix of
livestock and wildlife controls is optimal, but that efforts to suppress the wildlife reservoir
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are the most effective at reducing prevalence. We also find that controls should primarily be
directed at reducing the reservoir status of wildlife, but the types of controls and the ultimate
impact on disease outcomes differ. Bicknell et al. (1999) found population control efforts
should be used to suppress the wildlife reservoir, but this result is at least partially driven
by the ability to selectively harvest diseased wildlife in their model. We found population
controls to be a comparatively costly approach due to the expense associated with them
being non-selective with respect to disease status. Rather, we find that significant on-farm
biosecurity investments are warranted to reduce wildlife disease status, due to biosecurity
being a highly targeted control for reducing cross-species transmission. The result is that
wildlife impose fewer externalities on the livestock sector and so there are fewer incentives
to directly control the disease in wildlife—the opposite of what Bicknell et al. (1999) found
and in contrast to the conventional focus on eradication. These results support the notion that
the ability to target controls that will be effective in managing disease transmission is crucial
for determining an optimal disease strategy.

In whole, this body of work on the economics to diseases involving wildlife and livestock
demonstrates the need to consider the endogenous nature of ecological relations and asso-
ciated management tradeoffs, including the ecosystem services and damages provided by
hosts and their pathogens. Managers need to consider how well alternative strategies target
the services (damages) they wish to manage relative the cost of those strategies. Moreover, it
should be recognized that improving social welfare may not coincide with pathogen reduc-
tion. All too often, the goal of pathogen eradication is promoted irrespective of the costs and
without due consideration given to mitigation as an alternative strategy that may be pursued.

Appendix

Here we illustrate the derivation of the three partial singular solutions that arise in the
numerical example. A fully unconstrained, or quadruple singular solution, can also be derived
analytically, but this solution does not exist in our numerical example (i.e., interior values
do not simultaneously arise for all relevant variables) and so we do not devote space to it.
In each case, the basic approach is outlined in Bryson and Ho (1975, Chapter 8), though a
fundamental difference between our model and the examples they present is that Bryson and
Ho do not include discounting, which leaves them with the additional necessary condition
that the value of their Hamiltonian is optimally constant over time.

Partial Singular Solution When Only f is Constrained

The singular solution in this case involves constraining f to either f = 0 or f = f max ,
and also setting conditions (16)–(18), but not (19) equal to zero to derive the optimality
conditions λC = pC ,ψ = u, and λD = p(1−θD)−c/(q ND). First, take time derivatives of
the conditions λC = pC and ψ = u to derive dλC/dt = dψ/dt = 0. These optimal values
for λC , ψ , dλC/dt , and dψ/dt can be substituted into the arbitrage conditions (20) and
(23), which can then be solved for K (ND, θD, φD) and NC (ND, θD, φD). These relations
represent the optimal values of capital and cattle, respectively, conditional on the values of
the remaining state and co-state variables.

Now take the time derivative of the condition λD = p(1 − θD) − c/(q ND) and substi-
tute the resulting expression for λ̇D , along with the optimal values for λC , K (ND, θD, φD)

and NC (ND, θD, φD), into condition (21). Upon doing this, condition (21) can be written in
implicit form as ρ = �(ND, θD, φD, f ) (note that h D drops out of this expression, as is
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typical in renewable resource problems that are linear in the harvest; see Clark 1990). Next
solve this relation for φD(ND, θD, f ). Finally, take the time derivative of φD(ND, θD, f )
and substitute the resulting expression in for φ̇ (along with the solutions for all other
variables) in condition (22). It is possible to solve for h D(ND, θD, f ), which represents
a feedback rule for deer harvests. Also, given φD(ND, θD, f ), it is possible to solve for
NC (ND, θD, f ). The optimal feedback rules for capital investment and net cattle sales are
then Z = d K (ND, θD, f )/dt + ζK (for Z ≥ 0 only) and hC S = d NC (ND, θD, f )/dt −
[aNC − hC I ].
Partial Singular Solution When Only Z is Constrained

The singular solution in this case involves constraining Z to Z = 0 (so that K is fixed),
and setting conditions (16), (18), and (19), but not (17) equal to zero to derive the opti-
mality conditions λC = pC , λD = p(1 − θD) − c/(q ND), and φD = (w − [p(1 − θD)

− c/(q ND)]∂ ṄD/∂ f )/∂θ̇D/∂ f . First, take the time derivative of the condition λC = pC to
derive dλC/dt = 0. The optimal values for λC , φD , and dλC/dt can be substituted into the
arbitrage condition (20), which can then be solved for NC (ND, θD, K ) and the associated
feedback rule for net cattle sales hC S = d NC (ND, θD, K )/dt − [aNC − hC I ].

Now take the time derivatives of the conditions λD = p(1 − θD)− c/(q ND) and φD =
(w−[p(1 − θD)− c/(q ND)]∂ ṄD/∂ f )/∂θ̇D/∂ f and substitute the resulting expressions for
λ̇D and φ̇D , along with the optimal values for λC , φD , and NC (ND, θD, K ), into conditions
(21) and (22). After doing this, conditions (21) and (22) can be solved simultaneously for
the feedback rules h D(ND, θD, K ) and f (ND, θD, K ).

Partial Singular Solution When f and Z are Constrained

The singular solution in this case involves constraining f to either f = 0 or f = f max ,
constraining Z to Z = 0 (so that K is fixed), and also setting condition (16) and (18) equal
to zero to derive the optimality conditions λC = pC and λD = p(1 − θD)− c/(q ND). First,
take the time derivative of the condition λC = pC to derive dλC/dt = 0. The optimal values
for λC and dλC/dt can be substituted into the arbitrage condition (20), which can then be
solved for NC (ND, θD, φD, K ).

Now take the time derivative of the conditionλD = p(1−θD)−c/(q ND) and substitute the
resulting expression for λ̇D , along with the optimal values for λC , and NC (ND, θD, φD, K )
into condition (21). Upon doing this, condition (21) can be written in implicit form as
ρ = �(ND, θD, φD, K , f ) (as above, h D drops out of this expression). Next solve this rela-
tion for φD(ND, θD, K , f ). Take the time derivative of φD(ND, θD, K , f ) and substitute the
resulting expression in for φ̇ (along with the solutions for all other variables) in condition (22).
It is possible to solve for h D(ND, θD, K , f ), which represents a feedback rule for deer har-
vests. Also, given φD(ND, θD, K , f ), it is possible to solve for NC (ND, θD, K , f ). The opti-
mal feedback rule for net cattle sales is then hC S = d NC (ND, θD, K , f )/dt −[aNC −hC I ].
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